## Engineering Virtual Learning

 HS Intro to Engineering Design Lesson \#14 April 23, 2020Objective/Learning Target:
Students will reflect on "Free Throw" data while working with the Empirical Rule.
(project day 4 of 4)

## Bell-work:

## Do these Normal Distribution Bell Curve and the Frequency Distribution show the same data? Why or Why Not?

##  <br>  <br>  <br> Explain why your Free Throw data would probably not be normally distributed.

Record your answers in your engineers notebook in the "Free Throw Activity and the Empirical Rule"

## Learning Practice: The Empirical Rule

If our data has a "normal bell curve" distribution, we can use the empirical rule to predict the outcome of future data.

## If the data are normally distributed:

- $68 \%$ of the observations fall within 1 standard deviation of the mean.
- $95 \%$ of the observations fall within 2 standard deviations of the mean.
- $99.7 \%$ of the observations fall within 3 standard deviations of the mean.


## Empirical Rule Activity Problem-

A set of 1300 test scores is normally distributed. Out of 100 possible points, the mean is 78 and the standard deviation is 6 .
Draw a graph using the Empirical Rule to answer the following questions.
A. How many students scores are between 72 and 84 ?
B. How many students scores are between 66 and 90 ?
C. How many students scores are between 78 and 84 ?
D. How many students scores are lower than 72?
E. How many students scores are lower than 84 ?

Show all your work in your engineers Notebook

Check for Understanding: Answer Key


## Learning Resource Links:

## Emprical Rule - <br> https://www.youtube.com/watch?v=OhRr26AfFBU <br> https://www.youtube.com/watch?v=2fzYE-Emar0 <br> https://www.youtube.com/watch?v=2MgYDrGcn6c

Measures of central tendancy or Statistics -https://www.khanacademy.org/math/ap-statistics/summarizing-quantitative-data-ap/measuring-center-quantitative/v/statistics-intro-mean-median-and-mode

Standard Deviation -
https://www.youtube.com/watch?v=E4HAYd0QnRc
https://www.youtube.com/watch?v=HvDqbzu0iOE

